Zi Qiang Zhu: Parameter Estimation of Permanent Magnet Synchronous Machines
Parameter Estimation of Permanent Magnet Synchronous Machines
Buch
Artikel noch nicht erschienen, voraussichtlicher Liefertermin ist der 4.6.2025.
Sie können den Titel schon jetzt bestellen. Versand an Sie erfolgt gleich nach Verfügbarkeit.
Sie können den Titel schon jetzt bestellen. Versand an Sie erfolgt gleich nach Verfügbarkeit.
EUR 195,12*
- Wiley, 06/2025
- Einband: Gebunden
- Sprache: Englisch
- ISBN-13: 9781394280421
- Bestellnummer: 12117506
- Umfang: 336 Seiten
- Erscheinungstermin: 4.6.2025
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
Comprehensive reference delivering basic principles and state-of-the-art parameter estimation techniques for permanent magnet synchronous machines (PMSMs)Parameter Estimation of Permanent Magnet Synchronous Machines reviews estimation techniques of the parameters of PMSMs, introducing basic models and techniques, as well as issues and solutions in parameter estimation challenges, including rank deficiency, inverter nonlinearity, and magnetic saturation. This book is supported by theories, experiments, and simulation examples for each technique covered.
Topics explored in this book include:
Electrical and mechanical parameter estimation techniques, including those based on current / voltage injection and position offset injection, under constant or variable speed and load for sensored or sensorless controlled PMSMs, accounting for magnetic saturation, cross-coupling, inverter nonlinearity, temperature effects, and more
Recursive least squares, the Kalman filter, model reference adaptive systems, Adaline neural networks, gradient-based methods, particle swarm optimization, and genetic algorithms
Applications of parameter estimation techniques for improvement of control performance, sensorless control, thermal condition monitoring, and fault diagnosis
Parameter Estimation of Permanent Magnet Synchronous Machines, is an essential reference for professionals working on the control and design of electrical machines, researchers studying electric vehicles, wind power generators, aerospace, industrial drives, automation systems, robots, and domestic appliances, as well as advanced undergraduate and graduate students in related programs of study.