Zenghu Li: Measure-Valued Branching Markov Processes
Measure-Valued Branching Markov Processes
Buch
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 153,32*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Springer Berlin Heidelberg, 03/2024
- Einband: Kartoniert / Broschiert, Paperback
- Sprache: Englisch
- ISBN-13: 9783662669129
- Bestellnummer: 11799699
- Umfang: 492 Seiten
- Nummer der Auflage: 24002
- Auflage: 2nd ed. 2022
- Gewicht: 739 g
- Maße: 235 x 155 mm
- Stärke: 27 mm
- Erscheinungstermin: 15.3.2024
- Serie: Probability Theory and Stochastic Modelling - Band 103
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von Measure-Valued Branching Markov Processes
Klappentext
This book provides a compact introduction to the theory of measure-valued branching processes, immigration processes and Ornstein Uhlenbeck type processes.Measure-valued branching processes arise as high density limits of branching particle systems. The first part of the book gives an analytic construction of a special class of such processes, the Dawson Watanabe superprocesses, which includes the finite-dimensional continuous-state branching process as an example. Under natural assumptions, it is shown that the superprocesses have Borel right realizations. Transformations are then used to derive the existence and regularity of several different forms of the superprocesses. This technique simplifies the constructions and gives useful new perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The second part investigates immigration structures associated with the measure-valued branching processes. The structures are formulated by skewconvolution semigroups, which are characterized in terms of infinitely divisible probability entrance laws. A theory of stochastic equations for one-dimensional continuous-state branching processes with or without immigration is developed, which plays a key role in the construction of measure flows of those processes. The third part of the book studies a class of Ornstein-Uhlenbeck type processes in Hilbert spaces defined by generalized Mehler semigroups, which arise naturally in fluctuation limit theorems of the immigration superprocesses.
This volume is aimed at researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.