This book is the first comprehensive presentation of a central topic of stochastic geometry: random mosaics that are generated by Poisson processes of hyperplanes. It thus connects a basic notion from probability theory, Poisson processes, with a fundamental object of geometry. The independence properties of Poisson processes and the long-range influence of hyperplanes lead to a wide range of phenomena which are of interest from both a geometric and a probabilistic point of view. A Poisson hyperplane tessellation generates many random polytopes, also a much-studied object of stochastic geometry. The book offers a variety of different perspectives and covers in detail all aspects studied in the original literature. The work will be useful to graduate students (advanced students in a Master program, PhD students), and professional mathematicians. The book can also serve as a reference for researchers in fields of physics, computer science, economics or engineering.
Biografie (Daniel Hug)
Daniel Hug: Geboren 1965, Studium der Mathematik und Physik in Freiburg, Diplom 1991, Doktorat 1994 und Habilitation 2000 in Mathematik (Univ. Freiburg). Assistenzprofessor an der TU Wien (2000), 2000--2005 Assistenz-/Assistenzprofessor Univ. Freiburg, 2005--2007 Ausbildung und Tätigkeit als Gymnasiallehrer, 2007 Professor Univ. Duisburg-Essen, 2007--2011 Außerordentlicher Professor in Karlsruhe, seit 2011 Professor in Karlsruhe (KIT).
Biografie (Rolf Schneider)
Rolf Schneider: Geboren 1940, Studium der Mathematik und Physik in Frankfurt/M, Diplom 1964, Promotion 1967 (Frankfurt), Habilitation 1969 (Bochum), 1970 Wissenschaftlicher Rat und Professor Univ. Frankfurt, 1970 Professor TU Berlin, 1974 Professor Univ. Freiburg, 2003 Dr. h.c. Univ. Salzburg, 2005 Emeritus.