RG Brereton: Data Analysis and Chemometrics for Metabolomics
Data Analysis and Chemometrics for Metabolomics
Buch
lieferbar innerhalb 1-2 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 179,98*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Wiley, 07/2024
- Einband: Gebunden
- Sprache: Englisch
- ISBN-13: 9781119639381
- Bestellnummer: 11045108
- Umfang: 432 Seiten
- Gewicht: 1049 g
- Maße: 254 x 178 mm
- Stärke: 30 mm
- Erscheinungstermin: 10.7.2024
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
Understand new modes of analysing metabolomic dataMetabolomics is the study of metabolites, small molecules and chemical substrates within cells or larger structures which collectively make up the metabolome. The field of metabolomics stands to benefit enormously from chemometrics, an approach which brings advanced statistical techniques to bear on data of this kind.
Data Analysis and Chemometrics for Metabolomics constitutes an accessible introduction to chemometric techniques and their applications in the field of metabolomics. Thoroughly and accessibly written by a leading expert in chemometrics, and printed in full-colour, it brings robust data analysis into conversation with the metabolomic field to the immense benefit of practitioners.
Data Analysis and Chemometrics for Metabolomics readers will also find:
Statistical insights into the nature of metabolomic hypothesis testing, validation, and more
All metabolomics data sets from the book on a companion website
Case studies from human, animal, plant and bacterial biology
Data Analysis and Chemometrics for Metabolomics is ideal for practitioners in the life sciences, clinical sciences and chemistry, as well as metabolomics researchers or developers of research instruments looking to apply cutting-edge analytical techniques, and statisticians developing methods to design experiments and analyse large datasets of clinical and biological origin.