Junbo Zhao (Assistant Professor, Department of Electrical and Computer Engineering, University of Connecticut, USA): Zhao, J: Robust Dynamic State Estimation of Power Systems
Junbo Zhao (Assistant Professor, Department of Electrical and Computer Engineering, University of Connecticut, USA), Marcos Netto (Assistant Professor at the New Jersey Institute of Technology, Newark, USA.), Lamine Mili (Professor of Electrical and Computer Engineering, Virginia Tech, Falls Church, VA, USA)
Zhao, J: Robust Dynamic State Estimation of Power Systems
Buch
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 211,54*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Elsevier Science, 11/2024
- Einband: Kartoniert / Broschiert
- Sprache: Englisch
- ISBN-13: 9780128241578
- Bestellnummer: 11083290
- Umfang: 256 Seiten
- Erscheinungstermin: 1.11.2024
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
Robust Dynamic State Estimation of Power Systems demonstrates how to implement and apply robust dynamic state estimators to problems in modern power systems, thereby bridging the literatures of dynamic state estimation and robust estimation theory. The book presents Kalman filter algorithms, demonstrating how to build powerful, robust counterparts. Following sections build out case study-based implementations of robust Kalman filters to decontextualized applications across dynamic state estimation in power systems. Coverage encompasses theoretical backgrounds, motivations, problem formulation, implementations, uncertainties, anomalies and practical applications, such as generator parameter calibration, unknown inputs estimation, control failure detection, protection, and cyberattack detection.Future research topics are identified and discussed, including open research questions. The book will serve as a key reference for power system real-time monitoring, control center engineers, and graduate students for learning (course related work) and research.