Joshua S Weitz: Quantitative Biosciences Companion in MATLAB
Quantitative Biosciences Companion in MATLAB
Buch
- Dynamics Across Cells, Organisms, and Populations
lieferbar innerhalb 1-2 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 35,36*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Princeton University Press, 03/2024
- Einband: Kartoniert / Broschiert
- Sprache: Englisch
- ISBN-13: 9780691255682
- Bestellnummer: 11534292
- Umfang: 256 Seiten
- Gewicht: 558 g
- Maße: 254 x 203 mm
- Stärke: 17 mm
- Erscheinungstermin: 5.3.2024
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
A hands-on lab guide in the MATLAB programming language that enables students in the life sciences to reason quantitatively about living systems across scalesThis lab guide accompanies the textbook Quantitative Biosciences, providing students with the skills they need to translate biological principles and mathematical concepts into computational models of living systems. This hands-on guide uses a case study approach organized around central questions in the life sciences, introducing landmark advances in the field while teaching students-whether from the life sciences, physics, computational sciences, engineering, or mathematics-how to reason quantitatively in the face of uncertainty.
Draws on real-world case studies in molecular and cellular biosciences, organismal behavior and physiology, and populations and ecological communities
Encourages good coding practices, clear and understandable modeling, and accessible presentation of results
Helps students to develop a diverse repertoire of simulation approaches, enabling them to model at the appropriate scale
Builds practical expertise in a range of methods, including sampling from probability distributions, stochastic branching processes, continuous time modeling, Markov chains, bifurcation analysis, partial differential equations, and agent-based simulations
Bridges the gap between the classroom and research discovery, helping students to think independently, troubleshoot and resolve problems, and embark on research of their own
Stand-alone computational lab guides for Quantitative Biosciences also available in Python and R