Henning Omre: Bayesian Spatial Modelling with Conjugate Prior Models
Bayesian Spatial Modelling with Conjugate Prior Models
Buch
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 106,66*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Springer Nature Switzerland, 10/2024
- Einband: Gebunden, HC runder Rücken kaschiert
- Sprache: Englisch
- ISBN-13: 9783031654176
- Bestellnummer: 11991302
- Umfang: 244 Seiten
- Auflage: 2024
- Gewicht: 535 g
- Maße: 241 x 160 mm
- Stärke: 19 mm
- Erscheinungstermin: 4.10.2024
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
This book offers a comprehensive overview of statistical methodology for modelling and evaluating spatial variables useful in a variety of applications. These spatial variables fall into three categories: continuous, like terrain elevation; events, like tree locations; and mosaics, like medical images.Definitions and discussions of random field models are included for each of these three previously mentioned spatial variable types. Moreover, the readers will have access to algorithms suitable for applying this methodology in practical problem solving, and the computational efficiency of these algorithms are discussed.
The presentation is made in a consistent predictive Bayesian framework, which allows separate modelling of the observation acquisition procedure, as a likelihood model, and of the spatial variable characteristics, as a prior spatial model. The likelihood and prior models uniquely define the posterior spatial model, which provides the basis for spatial simulations, spatial predictions with associated precisions, and model parameter inference. The emphasis is on Bayesian spatial modelling with conjugate pairs of likelihood and prior models that are analytically tractable and hence suitable for data abundant spatial studies. Alternative methods frequently used in spatial statistics are presented using a unified notation.
The book is suitable as a textbook for a Spatial Statistics course at the MSc or PhD level, as it also includes algorithm descriptions, project texts, and exercises.