Computational Intelligence Methods for Bioinformatics and Biostatistics, Kartoniert / Broschiert
Computational Intelligence Methods for Bioinformatics and Biostatistics
- 18th International Meeting, CIBB 2023, Padova, Italy, September 6-8, 2023, Revised Selected Papers
(soweit verfügbar beim Lieferanten)
- Herausgeber:
- Martina Vettoretti, Erica Tavazzi, Enrico Longato, Giacomo Baruzzo, Massimo Bellato
- Verlag:
- Springer, 05/2025
- Einband:
- Kartoniert / Broschiert
- Sprache:
- Englisch
- ISBN-13:
- 9783031907135
- Artikelnummer:
- 12297775
- Umfang:
- 352 Seiten
- Gewicht:
- 534 g
- Maße:
- 235 x 155 mm
- Stärke:
- 20 mm
- Erscheinungstermin:
- 13.5.2025
- Hinweis
-
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
.- A Network Approach to Aquatic Food Web Dynamics.
.- Leveraging Diffuser Data Augmentation to enhance ViT-based performance on Dermatoscopic Melanoma Images Classification.
.- Thyroid Nodule Diagnosis Using a New Supervised Autoencoder Neural net work with multi-categorical medical data.
.- Can smoothing methods recognize the patterns of the hazard function in complex clinical scenarios? A simulation study using discrete-time survival models.
.- Nested Named Entity Recognition in Chinese Electronic Medical Records.
.- Transformers for Interpretable Classification of Histopathological Images.
.- Breast Cancer Malignancy Prediction Through Explainable Models based on a Multimodal Signature of Features.
.- Exploring the Conformational Odorant Space in the Olfactory Re-ceptor Binding Region.
.- Synergy between mechanistic modelling and Ensemble Feature Selection ap proaches to explore multiscale biological Heterogeneity.
.- Homophily of large weighted networks in a data streaming setting.
.- Living along COVID-19: assessing contention policies through Agent-Based Models.
.- Stochastic modeling and dosage optimization of a cancer vaccine exploiting the EpiMod Framework.
.- Extension of the GreatMod modeling framework to simulate non-Markovian processes with general-distributed events.
.- Identifying Damage-Related Features in scRNA-seq Data.
.- A benchmark study of gene fusion prioritization tools.
.- Improving the reliability of tree-based feature importance via consensus signals.
.- Interpretable Machine Learning for Automated Cellular Population Analysis in Flow Cytometry.
.- Pre-trained Models Based on Primary Sequence to Classify Antibody Bind ing to Protein and Non-Protein Targets with 80% Accuracy.
.- Inferring breast cancer subtype associations using an original omics integra tion based on Non-negative Matrix Tri-Factorization.
.- Screening the bioactivity of the P450 enzyme by spiking neural networks.
.- Enhancing functional interpretability in gene expression analysis through biologically-guided feature selection.
.- Extraction of Attributes from Electrodermal Activity Signals Applying Time Series Fuzzy Granulation for Classification of Academic Stress Perception in Different Scenarios.
.- Transfer Learning and AutoML as a Support for the Pneumonia Diagnosis using Chest X-ray scan.