Bilel Ben Atitallah: Hybrid Hand Sign Recognition for Real-Time Wearable Systems with Ambiguity Reduction
Hybrid Hand Sign Recognition for Real-Time Wearable Systems with Ambiguity Reduction
Buch
lieferbar innerhalb 2-3 Wochen
(soweit verfügbar beim Lieferanten)
(soweit verfügbar beim Lieferanten)
EUR 17,90*
Verlängerter Rückgabezeitraum bis 31. Januar 2025
Alle zur Rückgabe berechtigten Produkte, die zwischen dem 1. bis 31. Dezember 2024 gekauft wurden, können bis zum 31. Januar 2025 zurückgegeben werden.
- Technische Universität Chemnitz, 06/2024
- Einband: Kartoniert / Broschiert, Paperback
- Sprache: Englisch
- ISBN-13: 9783961002061
- Bestellnummer: 11884815
- Umfang: 192 Seiten
- Gewicht: 286 g
- Maße: 210 x 148 mm
- Stärke: 13 mm
- Erscheinungstermin: 3.6.2024
- Serie: Scientific Reports on Measurement and Sensor Technology - Band 24
Achtung: Artikel ist nicht in deutscher Sprache!
Klappentext
Hand sign recognition (HSR) has emerged as a significant field of research and development in the context of wearable systems and human machine interaction. The aim of this research is to investigate the potential of forearm-attached sensors to recognize hand signs and to propose a novel measurement approach for real-time HSR with reduced ambiguities. Three measurement methods are deeply investigated: Force Myography (FMG), Electrical Impedance Tomography (EIT), and surface Electromyography (EMG). The potential of these methods is evaluated in the context of American Sign Language (ASL). For a comprehensive comparative study, it is important to realize same conditions in the data collection. Therefore, a parallel data acquisition interface has been designed for simultaneous data collection. To assess the methods' capacity to distinguish between different hand signs independent of the classification algorithms, we propose a novel method for evaluating the ambiguities between different hand signs directly from the collected data. The application of this method to the collected data for all subjects shows, that EIT and FMG can better differentiate hand signs. Therefore, an FMG-EIT hybrid HSR method is proposed fusing the classification results of both methods based on their complementarity in solving ambiguous cases. The proposed method is able to achieve an average of real time accuracy of 94.16%, 82.5%, and 71.36% for the proposed fusion method, FMG and EIT respectively.Anmerkungen:
Bitte beachten Sie, dass auch wir der Preisbindung unterliegen und kurzfristige Preiserhöhungen oder -senkungen an Sie weitergeben müssen.
Mehr von Scientific Repo...
Meriam Ben Ammar
Design of a Self-Powered Energy Management Circuit for Piezoelectric Energy Harvesting based on Synchronized Switching Technology
Buch
EUR 12,90*
Salem Nasraoui
Laser-Induced Graphene Enhancement and Functionalization for Advanced Electrochemical Sensors
Buch
EUR 23,90*
Hanen Nouri
Voltage Controlled Current Source with Reduced Stray Capacitances Effect and Extended Impedance and Frequency Ranges
Buch
EUR 17,90*