Advances in Information Retrieval, Kartoniert / Broschiert
Advances in Information Retrieval
- 47th European Conference on Information Retrieval, ECIR 2025, Lucca, Italy, April 6-10, 2025, Proceedings, Part I
(soweit verfügbar beim Lieferanten)
- Herausgeber:
- Claudia Hauff, Craig Macdonald, Dietmar Jannach, Gabriella Kazai, Franco Maria Nardini, Fabio Pinelli, Fabrizio Silvestri, Nicola Tonellotto
- Verlag:
- Springer, 04/2025
- Einband:
- Kartoniert / Broschiert
- Sprache:
- Englisch
- ISBN-13:
- 9783031887079
- Artikelnummer:
- 12257309
- Umfang:
- 508 Seiten
- Gewicht:
- 762 g
- Maße:
- 235 x 155 mm
- Stärke:
- 28 mm
- Erscheinungstermin:
- 3.4.2025
- Hinweis
-
Achtung: Artikel ist nicht in deutscher Sprache!
Weitere Ausgaben von Advances in Information Retrieval |
Preis |
---|---|
Buch, Kartoniert / Broschiert, Englisch | EUR 164,28* |
Buch, Kartoniert / Broschiert, Englisch | EUR 164,28* |
Buch, Kartoniert / Broschiert, Englisch | EUR 164,28* |
Buch, Kartoniert / Broschiert, Englisch | EUR 164,28* |
Klappentext
.- Crossing the Structure Chasm -- Querying Data Without Limits.
.- Understanding the Interplay between LLMs' Utilisation of Parametric and Contextual Knowledge.
.- Knowledge Graphs Are Dead, Long Live Knowledge Graphs.
.- LIBRA: Measuring Bias of Large Language Model from a Local Context.
.- Embedding Cultural Diversity in Prototype-based Recommender Systems.
.- Is Relevance Propagated from Retriever to Generator in RAG?.
.- Measuring Actual Privacy of Obfuscated Queries in Information Retrieval.
.- One size doesn't fit all: Predicting the Number of Examples for In-Context Learning.
.- MURR: Model Updating with Regularized Replay for Searching a Document Stream.
.- Token Pruning Optimization for Efficient Dense Retrieval with Multi-Vector Representations.
.- Advancing Math Formula Search Using Diverse Structural and Symbolic Representations.
.- Ragnar¨ok: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track.
.- Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation.
.- Graph Representation of Tables+Text and Compact Subgraph Retrieval for QA Tasks.
.- Higher Order Knowledge Graph Embeddings.
.- Improving the Re-Usability of Conversational Search Test Collections.
.- Repeat-bias-aware Optimization of Beyond-accuracy Metrics for Next Basket Recommendation.
.- Guiding Retrieval using LLM-based Listwise Rankers.
.- Lost but Not Only in the Middle: Positional Bias in Retrieval Augmented Generation.
.- Biased PromptORE: Enhancing Relation Extraction in Gendered Languages and Complex Texts -- The Case of Spanish Documents from the XVI Century.
.- LSTM-based Selective Dense Text Retrieval Guided by Sparse Lexical Retrieval.
.- Context Example Selection For LLM Generated Relevance Assessments.
.- Enhancing FEVER-Style Claim Fact-Checking Against Wikipedia: A Diagnostic Taxonomy and Generative Framework.
.- Evaluating Auto-complete Ranking for Diversity and Relevance.
.- Semantically Proportioned nDCG for Explaining ColBERT's Learning Process.
.- Opt-in Transparent Fairness for Recommender Systems.
.- Malevolence Attacks Against Pretrained Dialogue Models.
.- Zero-Shot and Efficient Clarification Need Prediction in Conversational Search.
.- Decoding the Hierarchy: A Hybrid Approach to Hierarchical Multi-Label Text Classification.
.- A Multi-modal Recipe for Improved Multi-domain Recommendation.
.- Towards Identity-Aware Cross-Modal Retrieval: a Dataset and a Baseline.
.- Corpus Subsampling: Estimating the Effectiveness of Neural Retrieval Models on Large Corpora.
